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The ability to analyze, interpret, and draw insights from data and data visualizations is quickly 
becoming a necessary skill for success across multiple disciplines and careers. However, people 
struggle to make meaning from data, and traditional data-science curriculum falls short of 
emphasizing its relevance to underrepresented students. To create opportunities for meaningful 
applications of data-science for diverse students, we developed and implemented an online 
learning module focused on engaging N = 298 undergraduate students at a Hispanic Serving 
Institution (HSI) in an analysis of place-based soil data. Using a pretest posttest study design, we 
found that student’s perceptions of data-science relevance microbiology knowledge improved. 
We also inductively coded qualitative survey responses and used automated text analysis to 
explore how students framed “relevance” and how perceptions changed from pretest-to-posttest. 
Data literacy—decision-making through statistical methods and techniques—is essential across 
multiple industries (Ben-Zvi & Garfield, 2008; Gould, 2017; Steen, 2001). With the increasing 
volume of data in today’s world, being able to analyze, interpret, and draw insights from data 
and data visualizations is becoming essential for career success, likened to reading and mathem- 
atical literacy (Börner et al., 2019; Gal, 2002). Yet, despite the global demand to improve data 
science education, traditional courses are not meeting the needs of those seeking training 
(Baumer, 2015), and statistics education, while firmly grounded in mathematics curriculum 
(Ben-Zvi & Garfield, 2008; NCTM, 2000), does not traditionally tap into topics that students 
find relevant, such as interdisciplinary and sociopolitical applications (Kokka, 2019; Weiland, 
2017). This disconnect contributes to the lack of diversity with regards to race and gender in 
math-intensive STEM fields (NSF, 2015). Hispanic students, in particular, are underrepresented 
in STEM fields, particularly those related to statistics and data science (Fry et al., 2021). 

Theoretical Framework 
Conceptual Change. To frame how soil data collection and analysis can support science 

learning and perceptions of data science relevance for underrepresented students, we integrate 
frameworks of Conceptual Change, Data Literacy, and Place-Based Education. Conceptual 
change is a process where individuals restructure their conceptual knowledge to be more aligned 
with experts after engaging with novel information (Dole & Sinatra, 1998; Lombardi et al., 
2016). In these models, learner characteristics (e.g., their beliefs, motivation, and emotions) and 
information characteristics (e.g., comprehensibility, compellingness, and relevance) interact to 
determine students’ levels of cognitive engagement. Higher levels of engagement, along with 
shifts in motivation and emotion, predict more serious consideration (or reconsiderations) of 
whether scientific ideas are plausible (Lombardi et al., 2016), and higher likelihood of concep- 
tual change (see Figure S1 in the Supplemental Materials [SM]). Of these many factors, evidence 
suggests that data comprehensibility and compellingness can bolster student engagement and 
conceptual change (Thacker, 2023; 2024; Thacker et al., 2024; 2025; Thacker & Sinatra, 2022).  

Data Literacy. Though there is no consensus on a definition, the term “data literacy” refers 
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to statistical competencies, methods, and techniques that facilitate decision-making (Gould, 
2017). Given its complexity, frameworks often span between about 5 to 20 interrelated 
competencies. These include:  understanding, acquiring, reading, interpreting, evaluating, 
managing, visualizing, and using data (Börner et al., 2019; Carlson & Johnston, 2014; Kim et al., 
2023; Prado & Marzal, 2013; Ridsdale et al., 2015); dimensions critical advancing science 
broadly (Qiao et al., 2024).  This study focuses on promoting students’ translation of relevant 
problems of interest into problems of data (Börner et al. 2019). That is, before acquiring data, 
individuals must first understand how the data relates to a relevant situation or problem, and 
think analytically about how they might operationalize and measure variables of interest. 

Place-Based Education. A useful framework for contextualizing data and creating 
personally relevant data experiences for students is to connect to their “sense of place” (Semken 
et al., 2017). Place-based learning is grounded in students’ local contexts and systems of 
meaning such as culture, history, and community. Place-based learning is ideal for microbiology, 
geoscience, and agricultural education because of their direct relation to one’s lived environment 
and can be used as a means to enhance culturally inclusive practices for diverse learners (NGSS, 
2013; Semken et al., 2017). Although there are useful examples of place-based STEM education 
at the undergraduate level (Gosselin et al., 2016), its effectiveness for diverse learners remains 
understudied, as well as the role of emotion and motivation in place-based education (Semken et 
al., 2017). In this project, address these research gaps by focusing on three research questions:  

● RQ1. To what extent do student’s perceptions of data science relevance and microbiology 
knowledge change after exploring place-based soil data and data visualizations?  

● RQ2. How do students describe the relevance of data-science? What levels of analytical 
thinking are evident in those descriptions? And how do these dimensions change after 
exploring place-based soil data and data visualizations? 

● RQ3. What soil-related variables do students identify as being relevant for data 
exploration? And how do these perceptions change from pre- to post-intervention? 

Methods 
To address these research questions, we designed a learning intervention for place-based soil 

data exploration. We then used a pretest posttest research design that investigated changes in 
students’ perceived data relevance and microbiology conceptions. 

Intervention Developed. Prior to conducting the current study, we developed and tested 
an interdisciplinary data-literacy/microbiology learning intervention (see Thacker et al., 2025). 
The intervention is an asynchronous, open-access learning module developed in SoftChalk Cloud 
that introduces undergraduate students enrolled in a microbiology course to the Tiny Earth 
Initiative (Hurley et al., 2021), with a particular focus on introducing students to data-science 
applications. Tiny Earth is a national initiative concentrated on identifying new antibiotics in soil 
to combat the escalating antibiotic resistance crisis by encouraging undergraduate students to 
collect soil from the place where they live, study the bacteria in that soil, analyze the bacteria for 
antibiotic activity, and add their data to an online repository. In addition to introducing students 
to the goals and public data repository of Tiny Earth, the module introduced students to relevant 
information related to the antibiotic resistance crisis (the problem of diminishing effects of 
common antibiotics to stop bacterial infection), discussed microbial ecology factors that are 
important for creating soil conditions that harbor new antibiotics, prompted students to generate 
personally relevant research questions, provided a short tutorial on data visualization tools, and 
immersed students in soil data visualization interpretation. Students explored whether a selection 
of variables (landform type, soil type, annual precipitation, pH, and annual air temperature) were 
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related to the percentage of antibiotic producers in a selection of map visualizations generated 
from the TinyEarth national repository data (see SM, Figure S2). 

Participants and Procedures. To answer our research questions, we recruited N = 298 
undergraduate students from an HSI in a southwestern state of the USA over the course of three 
semesters. Students reported their year of study (1% first year, 13% second year, 38% third year, 
38% fourth year, and 10% other), gender (75% Female, 22% Male, 1% Nonbinary, 2% prefer not 
to say) ethnicity (55% Hispanic), race (1% American Indian/Alaska Native, 12% Asian, 7% 
Black/African- American, 9% Two or more races, 62% White/Caucasian, 9% Other race), and 
whether they were enrolled in a STEM major (79% STEM major, 15% not STEM, 1% plan to 
enroll in a STEM major, 4% Other).  

Survey Measures. All participants first completed a researcher-created 12 item pretest 
questionnaire measuring their microbiology knowledge, which was averaged and converted to 
percentage points for all analyses. Students also completed a three-item data literacy measure 
based on principles from Börner et al. (2019). Two of the data literacy questions were open-
ended and were used in qualitative analyses. The first open-ended item prompted students to 
“Explain why you think that data science is or is not relevant for the field of soil microbiology. 
Provide examples if possible.” The second item prompted students to, “Please make a list of any 
variables that might be relevant for data scientists to investigate when exploring information 
about soil.” The third item was a single item assessing students’ perceptions of data science 
relevance on a scale from 1 = Not at all relevant to 5 = Very relevant (see SM, Appendix B–C). 

After the pretest, learners completed the ~60 minute module and then completed an identical 
post-test of microbiology knowledge and data literacy. Cronbach’s alpha for the microbiology 
knowledge scale was .65 at pretest and .71 at posttest. Participants completed additional 
measures that are beyond the scope of this study (see Thacker et al., 2025).  

Findings 
RQ1: Pre-Post Improvements in Data Science Relevance and Microbiology Knowledge 

To investigate whether there were significant changes in mean data relevance perceptions 
and microbiology knowledge, we used paired Wilcoxon signed rank tests to account for skewed 
distributions. Students’ perceptions of data-science relevance significantly improved from pretest 
to posttest (Mpre=4.2, SDpre=0.88, Mpost=4.5, SDpost=0.81; W=2425, p<.001, Cohen’s d=.33), as 
did microbiology knowledge (Mpre=76%, SDpre=17, Mpost=83%, SDpost=16; W=4326, p<.001, 
d=.39). For visualizations of distributions, see Figure S3 in the supplemental materials.  
RQ2: Qualitative Analyses of Student Perceptions of Data-Science Relevance 

Inductive Analysis. To explore how students perceived the relevance of data-science 
relevance in soil microbiology analysis, we analyzed their open ended responses in two ways. 
The first was by using traditional inductive coding processes. Two graduate student researchers 
openly-coded responses to the prompt: “Explain why you think that data science is or is not 
relevant for the field of soil microbiology…” They read each student’s response at pretest and 
posttest and categorized them freely. We then met to discuss common codes, emerging themes 
related to all student responses, and collectively developed a codebook (see Appendix A in SMs) 
which we used to systematically recode all responses (Saldaña, 2021; Chamraz; 2015). The 
codebook captured four dimensions of students’ relevance perceptions, i.e., that data-science 
offers: (a) understanding, and illuminates, explains, or provides insight into properties of soil by 
offering comparing and contrasting information or showing trends; (b) utility to address real-
world problems in specific fields, using specific analytic techniques, by visualizing problems, 
saving time, and other vague applications; (c) is vaguely useful or relevant with unclear 
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reasoning for why, and (d) that data-science is not relevant in their perspective. A summary of 
the results are presented in SM, Table S1, and examples of student responses for each code in 
Appendix A. Overall, we found that the most common code was utility perceptions, noted by 
74% of students at pretest, 68% at posttest, understanding (34%-pre, 35%-post), followed by 
vague explanations (15%-pre, 16%-post) and not relevant (5%-pre, 3.7%-post). 

Automated Text Analysis. The second way in which we coded the qualitative data was 
using LIWC 2022 (Linguistic Inquiry and Word Count) a validated automated text analysis 
program (Boyd et al., 2022). Specifically, we assessed students’ use of words pertaining to 
analytical thinking dimensions, which demonstrate cognitive skill and engagement (see, e.g., 
Markowitz, 2023; Pennebaker et al., 2014) at pretest and posttest and compared them. Across the 
five dimensions of analytic cognitive processes (insight, causation, discrepancy, tentativeness, 
certitude, and differentiation), Wilcoxon signed rank tests revealed significantly lower levels of 
“discrepancy” language at posttest (p=.006, d= -.22), and significantly lower levels of “tentative- 
ness” at posttest (p=.006, d= -.19; see SM, Table S1 for means and SDs across analytic thinking).  
RQ3: Relevant Soil-Variables Identified 

We also used LIWC to analyze the list of variables that students provided at pretest and 
posttest that they perceived would be relevant in data-exploration. See SM, Table S2 for pre-post 
word counts, word clouds, and differences in frequencies. Comparing pre and post, it is evident 
that students became more specific in their language, salience of “moisture,” “temperature, “ph,” 
and other terms at posttest compared to pretest, while “soil” remains prominent across both. In a 
comparative analysis between pretest-and-posttest that highlights words that are more associated 
with pre vs post, we see that “animals” and “organisms” are more prominently related to the 
pretest, whereas more chemical and landscape factors are more prominent in the posttest. 

Discussion 
We sought to develop a learning intervention that promotes data-literacy skills as they apply 

to place-based soil microbiology learning experiences. We found that students significantly 
improved their perceptions of data science relevance and science knowledge from pretest to 
posttest, consistent with prior theory and evidence (Lombardi et al., 2016; Thacker et al., 2025).  
Student’s open ended explanations revealed that students tended to explain data-science 
relevance in terms of its utility across medical and STEM professions and its capability to help 
scientists better understand properties of soil-data. This suggests that students are predisposed to 
expect data-tools to support their understanding of multidisciplinary topics, and appear to be 
eager to learn and apply what they know to problem-solve in multiple domains.  

Automated text analysis revealed that students used less discrepant and tentative language at 
posttest compared to pretest when discussing data relevance, indicating improved levels of 
certainty. We also found that students identified lists of soil-related variables that became more 
specific and specialized over time. Terms such as “animals” and “organisms” became less 
emphasized in place of more relevant microbiological properties such as “pH”, “nitrogen,” and 
“chemical.” This suggests that students improved in terms of confidence and identification of 
relevant variables, both of which are critical for persisting in data-literate professions.  

Generally speaking, our findings demonstrate that data-literacy supports combined with 
place-based learning experiences can dually enhance students’ knowledge, motivation, and data-
literacy in terms of identifying analytical variables (Lombardi et al., 2016; Semken et al., 2017; 
Börner et al., 2019; Carlson & Johnston, 2014). We encourage researchers and practitioners to 
ground data-analysis experiences in real world and place-based scenarios to help students 
understand the scientific and societal factors underlying what they observe.  
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